Study of Gate Line Edge Roughness Effects in 50 nm Bulk MOSFET Devices
نویسندگان
چکیده
We studied gate line edge roughness (LER) and its effect on electrical characteristics of 50nm bulk MOSFETs. Using simulation, we studied the underlying mechanism of three significant LER effects on the electrical performance of advanced 50 nm gate length bulk devices. First, we found that off-state leakage current is much more sensitive than the on-state drive current to gate LER. Second, we found that high frequency LER can lead to a decrease in effective channel length by enhanced lateral diffusion of the self-aligned source/drain extension. Third, low frequency LER causes local CD variation simply due to the statistical variation of average CD in a finite width sample. We also show how device design parameters, such as halo implant dose, can be used to tradeoff LER sensitivity and device performance.
منابع مشابه
Intrinsic Parameter Fluctuations in Decananometer MOSFETs Introduced by Gate Line Edge Roughness
In this paper, we use statistical three-dimensional (3-D) simulations to study the impact of the gate line edge roughness (LER) on the intrinsic parameters fluctuations in deep decananometer (sub 50 nm) gate MOSFETs. The line edge roughness is introduced using a Fourier synthesis technique based on the power spectrum of a Gaussian autocorrelation function. In carefully designed simulation exper...
متن کاملImplications of Imperfect Interfaces and Edges in Ultra-small MOSFET Characteristics
We use 3D statistical simulations to analyze the influence of imperfect interfaces and edges in sub100 nm MOSFET characteristics. In particular, we focus on the impact of gates deformed by line edge roughness, and of oxide thickness variations resulting from a rough Si/SiO2 interface. The 3D simulations are based on a very efficient 3D drift-diffusion framework, which can introduce quantum mech...
متن کاملA 3-D Atomistic Study of Archetypal Double Gate MOSFET Structures
The double gate MOSFET architecture has been proposed as a possible solution to allow the scaling of MOSFETs to the sub-30 nm regime, particularly due to its inherent resistance to short-channel effects. The use of lightly doped, or even undoped, channels means that such devices should be inherently resistant to random dopant induced fluctuations which will be one of the major obstacles to MOSF...
متن کاملImpact of SOI thickness on device performance and gate oxide reliability of Ni fully silicide metal-gate strained SOI MOSFET
This study investigates the effects of oxide traps induced by SOI of various thicknesses (TSOI = 50, 70 and 90 nm) on the device performance and gate oxide TDDB reliability of Ni fully silicide metal-gate strained SOI MOSFETs capped with different stressed SiN contact-etch-stop-layer (CESL). The effects of different stress CESLs on the gate leakage currents of the SOI MOSFET devices are also in...
متن کاملFull 3D Statistical Simulation of Line Edge Roughness in sub-100nm MOSFETs
Line Edge Roughness (LER), caused by tolerances inherent to materials and tools used in lithography processes, is not a new phenomenon. Yet, the imperfections caused by LER have caused little worry over the years since the critical dimensions of MOSFETs were almost two orders of magnitude larger than the roughness. However, as the aggressive scaling of Si-MOSFETs continues to the sub-100 nm reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003